

Economic implications of AI on media industries: A systematic review

Diginomics.

2025; 4:223

DOI: 10.56294/digi2025223

ISSN: 3072-8428

Implicaciones económicas de la IA en las industrias de los medios: una revisión sistemática

Samuel Danso¹ , Solace Yawa Asafo¹ , Frederick Kaayeng² , Ebenezer Ato Kwamena Aidoo³ , Ruth Larweh⁴

¹University of Media, Arts and Communication, Faculty of Journalism and Media Studies. Accra, Ghana.

²University of Cape Coast, Department of Communication Studies. Cape Coast, Ghana.

³James Madison University, School of Communication Studies. Harrisonburg, VA, U.S.

⁴University of Education, Winneba, School of Communication and Media Studies. Winneba, Ghana.

Cite as: Danso S, Yawa Asafo S, Kaayeng F, Kwamena Aidoo EA, Larweh R. Economic implications of AI on media industries: A systematic review. Diginomics. 2025; 4:223. <https://doi.org/10.56294/digi2025223>

Corresponding author: Samuel Danso

ABSTRACT

Introduction: artificial intelligence continues to reshape media industries with demands on content creation and distribution of media products. This paradigm shift requires research to better understand AI's implications on the media industry. However, existing studies lack synthesis of empirical studies.

Objective: to analyze the economic implications of AI on media industries.

Method: a systematic review of 65 articles was carried out, published between 2014 and 2024 from EBSCOhost, Google Scholar, ResearchGate and Scopus databases.

Results: majority of the studies reviewed lacked theoretical foundations, highlighting a gap in AI research on media industries. There was a steady increase of publications from 2022 to 2024, reflecting growing scholarly interest in the field. Three major themes relating to the economic implications of AI on media industries emerged: job performance, economic hardship, and ethical challenges. The study highlights that research on the subject is most active in Europe and Asia, with limited publications in Oceania and Africa. Additionally, no article was recorded in South America.

Conclusions: artificial intelligence profoundly influences media economics, highlighting both opportunities and challenges that redefine industry practices and academic discourse globally.

Keywords: Economic Implications; Artificial Intelligence; Media Industries; Algorithm Bias; Job Displacement.

RESUMEN

Introducción: la inteligencia artificial continúa transformando las industrias de los medios de comunicación, con demandas en la creación y distribución de contenido. Este cambio de paradigma requiere investigación para comprender mejor las implicaciones de la IA en la industria de los medios. Sin embargo, los estudios existentes carecen de una síntesis de estudios empíricos.

Objetivo: analizar las implicaciones económicas de la IA en las industrias de los medios.

Método: se realizó una revisión sistemática de 65 artículos, publicados entre 2014 y 2024 de las bases de datos EBSCOhost, Google Scholar, ResearchGate y Scopus.

Resultados: la mayoría de los estudios carecían de fundamento teórico, lo que pone de manifiesto una brecha en la investigación sobre IA en las industrias mediáticas. Se observó un aumento constante de publicaciones entre 2022 y 2024, lo que refleja el creciente interés académico en el campo. Surgieron tres temas principales relacionados con las implicaciones económicas de la IA en las industrias mediáticas: rendimiento laboral, dificultades económicas y desafíos éticos. El estudio destaca que la investigación sobre el tema es más activa en Europa y Asia, con publicaciones limitadas en Oceanía y África. Además, no se registró ningún artículo en Sudamérica.

Conclusiones: la inteligencia artificial influye profundamente en la economía de los medios, destacando tanto oportunidades como desafíos que redefinen las prácticas de la industria y el discurso académico a nivel global.

Palabras clave: Implicaciones Económicas; Inteligencia Artificial; Industrias De Los Medios; Sesgo De Algoritmo; Desplazamiento Laboral.

INTRODUCTION

The integration of artificial intelligence (AI) into the media industry has emerged as one of the most transformative technological developments of the 21st century. AI systems have revolutionized various facets of media production and operations, ranging from content creation^(1,2) and branding^(3,4) to marketing⁽⁵⁾ and from distribution to audience engagement and revenue generation.^(6,7) Platforms such as Netflix and Spotify exemplify how AI-driven algorithms personalize content consumption, thereby reshaping user experience.⁽⁸⁾ Furthermore, the automation of labor-intensive tasks such as video editing and news reporting has introduced operational efficiencies and cost savings across media organizations.⁽⁹⁾ Bellman⁽¹⁰⁾ details the foundations of AI and points out that its ability to process large amounts of information at unprecedented speed plays a significant role in increasing economic efficiency. Russell et al.⁽¹¹⁾ conducted a survey of AI-based studies. The results show how AI technologies can transform resource allocation, streamline operations and enhance innovation. Poole et al.⁽⁹⁾ analysis of computational intelligence emphasizes a rational approach to AI and how it can be used for economic purposes. Charniak et al.⁽¹²⁾ reveal that the analytical capabilities of AI can lead to economic growth. Moreover, Lu et al.⁽¹³⁾ argue that AI drives innovation that creates new business models and growth opportunities, which is important in industries characterized by rapid technological change.

Beyond operational transformations, the economic implications of AI on media industries have generated growing scholarly interest. AI technologies are increasingly influencing productivity, labor markets, business models and competitive dynamics.⁽¹³⁾ While these technologies promise innovation and efficiency, they also raise critical concerns about misinformation, content integrity, and the ethical use of automated systems in news dissemination.^(14,15) Pennycook et al.⁽¹⁴⁾ examined fighting misinformation on social media using crowdsourced judgments of news source quality. Their study shows how the use of AI in content creation and distribution raises ethical issues about accuracy, bias and misinformation. They contend that AI-generated content can sometimes lack the integrity of human-generated media. This concern is particularly relevant for news media, where the rapid dissemination of information can have profound impact on the public. Similar sentiment was shared by Adjin-Tettey et al.⁽⁶⁾ who identified that ethical quandaries of misinformation, improper attribution, and intellectual property are key implications of AI on media industries. The transformative power of AI is evident in the way it transforms workplace processes by replacing human tasks. This is particularly highlighted in the work of Russell et al.⁽¹¹⁾ revealing that AI systems could revolutionize media production and consumption by performing tasks previously considered human intelligence. Furthermore, Chui⁽¹⁶⁾ highlights the concerns about job loss and economic inequality that AI has created in the media industry. These implications signify the need for a balanced approach in adopting AI technologies, taking into consideration both the potential benefits and the challenges that come with them.

Although a growing number of studies have examined the intersection between AI and economic performance in media settings,^(6,11,12,13,14,15,16) a systematic and comprehensive synthesis of this body of literature remains lacking. Existing studies are fragmented, with limited clarity on the bibliometric

characteristics of this field, the thematic trends guiding current scholarship, and the future research directions necessary for advancing knowledge. Addressing this gap, the present study conducts a systematic literature review (SLR) to critically examine the economic implications of AI on media industries. Ultimately, the study aim to support both scholars and practitioners in understanding the evolving relationship between AI and the economic landscape of media industries.

METHOD

The study used the SLR method, where existing literature on the economic implications of AI on media industries was extracted and carefully examined. The choice of SLR was motivated by its clear and methodical approaches to reduce bias and offer trustworthy data for findings that ensure cogent conclusions.⁽¹⁷⁾

Database search

The study was undertaken in June 2025 following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A comprehensive literature search was carried out across EBSCOhost, Google Scholar, ResearchGate, and Scopus databases. The search was limited to peer-reviewed English-language journal articles and relevant gray literature published within the study's timeframe. Searches were executed within specific fields such as title, abstract, and keywords to maximize precision. Search strings combined keywords and Boolean operators such as "(Artificial Intelligence) AND (Media Industry) AND (Economic Impact)" to capture diverse results. Retrieved records were exported, meticulously screened, and duplicates removed. This systematic approach ensured transparency, consistency, and reproducibility of the review process. Google Scholar and ResearchGate, though useful for locating scholarly materials, present known limitations. Google Scholar lacks transparency in its coverage and often contains duplicate or inconsistent records, while ResearchGate is not a curated database and includes non-peer-reviewed content. To address these issues, meticulous duplicate removal and careful manual screening were employed to ensure only relevant and high-quality studies were included in the analysis, thereby enhancing the reliability and credibility of the review.

The researchers selected articles published between 2014 and 2024 for the SLR. According to Amponsah et al.⁽¹⁸⁾ the last decade has witnessed significant research in AI technologies, including the rise of machine learning, natural language processing, and generative AI, all of which have transformed media production and distribution. The first and second authors extracted the data, while the third, fourth and fifth authors reviewed it. The purpose of this procedure was to increase the data extraction's accuracy and dependability.

Thematic analysis

Through thematic analysis, the authors coded the data using Braun et al.⁽¹⁹⁾ guidelines. The authors used thematic analysis because it is flexible and allows for detailed descriptions of the data. During the process, the authors familiarized themselves with the data, noting down initial codes. Subsequently, the authors systematically coded the data. During this process, every segment of data that relates to job performance, economic hardship, or ethical challenges were identified and labeled. Codes

such as “innovation,” “creativity,” and “productivity” were grouped under the broader theme of job performance. Similarly, mentions of “job displacement” and “market disruption” were coded under economic hardship, while “transparency,” “algorithm bias,” and “deep fakes” were coded under ethical challenges. The researchers then reviewed the themes to ensure they work in relation to the coded data.

Job performance was defined as a theme that captures various aspects of how work is executed and measured in the context of innovation, creativity and productivity. Economic hardship was defined as the theme encompassing the financial and employment challenges faced due to job displacement and market disruption. Similarly, ethical challenges were defined as the difficulties related to maintaining transparency, avoiding algorithm bias, and dealing with the implications of deep fakes. Finally, the authors compiled the report based on the themes that emerged.

Coding

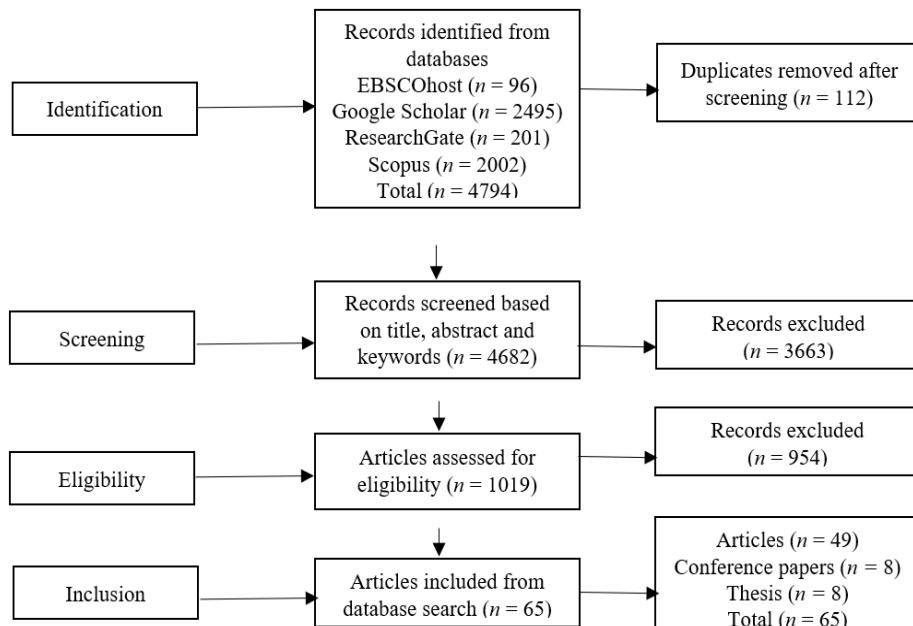
During coding, data on the economic implications of AI on media industries were methodically retrieved from the content of the 65 articles. After that, a coding sheet was used to enter the data into Microsoft Excel. During this process, each paper’s year of publication, study methodology, and geospatial distribution were all noted. As shown below, this method helped to provide a unique perspective on the patterns and trends observed in the study from multiple dimensions, a way that individual studies might not capture.

Yearly Publication: the following categories were coded to determine the yearly distribution of articles: a) 2014 b) 2015 c) 2016 d) 2017 e) 2018 f) 2019 g) 2020 h) 2021 i) 2022 j) 2023 k) 2024.

Research methods: to determine the dominant research methods, the following categories were coded: a) qualitative b) quantitative c) mixed methods

Geospatial distribution: to reveal the geographical context of studies, the following categories were coded: a) Europe b) South America c) North America d) Asia e) Africa f) Oceania g) Continental overlap

Economic implications of AI on media industries: in identifying the economic implications of AI on media industries, the following categories were coded: a) job performance b) economic hardship c) ethical challenges.


Interrater Reliability

This study uses a single peer-reviewed article that focuses on the economic implications of AI on media industries as the unit of analysis. The sub-sample of 20 articles (n = 20) was randomly selected from the full set of 65 articles. This approach ensured that each article had an equal chance of being included, minimizing selection bias. This random sampling approach was used to provide a manageable yet representative subset for coding. During coding, two team members independently analyzed the articles, noting agreements and disagreements in an Excel sheet. Discrepancies were then discussed collaboratively, and any unresolved differences were reconciled through consensus. Interrater reliability was assessed using Cohen’s kappa, yielding an average value of 0,78 with percentage agreement between 70 % and 80 %. This Cohen’s kappa value demonstrates substantial consistency and trustworthiness in the coding process.

RESULTS

Inclusion and exclusion analysis

During the inclusion and exclusion analysis, the authors identified 4794 articles from the selected databases. Thus, EBSCOhost (2,00 %, n=96), Google Scholar (52,04 %, n=2495), ResearchGate (4,19 %, n=201), and Scopus (41,77 %, n=2002). See figure 1 for details. During the data cleaning process, 2,34 % (n=112) duplicates were removed. The duplicates EBSCOhost (0,10 %, n=5), Google Scholar (1,06 %, n=51), ResearchGate (0,44 %, n=21), and Scopus (0,74 %, n=35) were removed because they were different versions of the same document published in other journals. Furthermore, the 4682 articles were screened out of which 76,41 % (n=3663) were excluded because they were published before 2014. Details of those excluded are: EBSCOhost (0,94 %, n=45), Google Scholar (42,87 %, n=2055), ResearchGate (2,17 %, n=104), and Scopus (30,43 %, n=1459). From the 1019 articles assessed for eligibility and inclusion,

Figure 1. PRISMA Model with the literature review process on economic implications of AI on media industries

19,90 % (n=954) were further excluded because their focus was not on economic implications of AI on media industries. Thus, EBSCOhost (0,94 %, n=45), Google Scholar (7,30 %, n=350), ResearchGate (1,46 %, n=70), and Scopus (10,20 %, n=489).

The workflow shows that out of the 4794 articles accessed from the four databases, only 1,36 % (n=65) were included in the study. The distributions are EBSCOhost (0,02 %, n=1), Google Scholar (0,71 %, n=34), ResearchGate (0,13 %, n=6), and Scopus (0,50 %, n=24). These articles were published between 2014 and

2024 and consisted of gray literature and peer-reviewed journal articles written in the English language and also focused on economic implications of AI on media industries.

Summary of previous studies

Table 1 below provides summary of key findings such as year of publication, theoretical analysis, geospatial context of studies, and economic impact of AI.

Table 1. Summary of findings

Author(s)	Year of publication	Theory	Methods	Geographical context of study	Economic impact of AI
Rouser ⁽²⁰⁾	2024	NA	Qualitative	Continental perspectives	Disruption of traditional markets
Fauzi ⁽²¹⁾	2024	NA	Qualitative	Asia	Increase efficiency, productivity, and competitiveness
Totlani ⁽²²⁾	2023	NA	Qualitative	Asia	Content creation, production workflows, and distribution strategies.
Adjin-Tettey et al. ⁽⁶⁾	2024	NA	Qualitative	Africa	Job displacement
Chow ⁽⁷⁾	2020	NA	Qualitative	Europe	Disruption of traditional markets
Debie ⁽¹⁾	2024	NA	Mixed methods	Africa	Transparency
Sjøvaag ⁽⁵⁾	2024	NA	Qualitative	Europe	Productivity
de Bustos et al. ⁽²⁾	2019	NA	Qualitative	North America	Disruption of traditional markets
Horska ⁽²³⁾	2020	NA	Qualitative	Europe	Job displacement
Arya et al. ⁽³⁾	2023	NA	Qualitative	Asia	Increase productivity
Del Barrio-García et al. ⁽²⁴⁾	2019	Unifying theory-based framework	Quantitative	Europe	Innovation, creativity
Ji ⁽²⁵⁾	2019	NA	Quantitative	Continental perspectives	Disruption of traditional markets
Lee ⁽²⁶⁾	2022	NA	Qualitative	Europe	Creativity
Willig ⁽⁴⁾	2022	NA	Qualitative	Europe	Digitizing, quantifying and commodifying media audiences
Zabaleta et al. ⁽²⁷⁾	2022	NA	Mixed methods	Europe	Increase investments
Jamil ⁽²⁸⁾	2023	New Institutionalism Theory	Qualitative	Asia	Transparency, algorithm bias
Bender ⁽²⁹⁾	2024	'meaningful work' framework	Qualitative	Oceania	Disappearance of human creative labor
Ji et al. ⁽³⁰⁾	2024	NA	Qualitative	Asia	Deep fakes, transparency
Munoriyarwa et al. ⁽³¹⁾	2023	NA	Qualitative	Africa	Fear of job losses, accountability
Simon ⁽³²⁾	2022	NA	Qualitative	Europe	Disruption of traditional markets
Dörr ⁽³³⁾	2016	NA	Qualitative	Continental perspectives	Job displacement
Böyük ⁽³⁴⁾	2024	NA	Qualitative	Europe	Algorithm bias, deep fakes
Al Adwan et al. ⁽³⁵⁾	2023	Technological determinism theory	Qualitative	Asia	Job displacement
Noain Sánchez ⁽³⁶⁾	2022	Conceptual framework	Qualitative	Continental perspectives	Algorithm bias, increasing productivity, saving time
Haas ⁽³⁷⁾	2020	NA	Qualitative	North America	Transparency, echo chambers
Chuan et al. ⁽³⁸⁾	2019	Framing theory	Quantitative	North America	Misuse of AI
Yu ⁽³⁹⁾	2022	NA	Quantitative	Europe	Content creation, productivity, algorithm bias
Zhao et al. ⁽⁴⁰⁾	2019	NA	Qualitative	Asia	Job displacement, increase productivity
Bhatnagar ⁽⁴¹⁾	2022	NA	Qualitative	Asia	Revamp media industries, job displacement
Sirén-Heikel et al. ⁽⁴²⁾	2023	Organizational theory	Qualitative	Continental perspectives	Increase productivity
Milder ⁽⁴³⁾	2022	NA	Qualitative	Europe	Deep fakes
Jamil et al. ⁽⁴⁴⁾	2022	Diffusion of innovation theory	Qualitative	Asia	Business expansion, job redundancy

Septiawan ⁽⁴⁵⁾	2024	NA	Qualitative	Asia	Algorithm bias
Pandiyara et al. ⁽⁴⁶⁾	2024	Technology Acceptance Model	Mixed methods	Asia	Literacy and innovation
Wladdimiro Quevedo ⁽⁴⁷⁾	2022	Critical discourse analysis	Qualitative	Continental perspective	Driving the creation of exciting and disruptive businesses.
Khan ⁽⁴⁸⁾	2023	Technological Determinism	Qualitative	Europe	automated data analysis, content creation and curation, job displacement
Díaz-Noci ⁽⁴⁹⁾	2020	NA	Qualitative	Europe	Algorithm bias
Tejedor et al. ⁽⁵⁰⁾	2021	NA	Qualitative	Europe	Increased productivity
Canavilhas ⁽⁵¹⁾	2022	NA	Quantitative	Europe	Economic and professional constraints.
McElroy ⁽⁵²⁾	2023	NA	Qualitative	Europe	Job displacement
Hess et al. ⁽⁵³⁾	2018	NA	Qualitative	Europe	Increase productivity
Zhang ⁽⁵⁴⁾	2022	NA	Qualitative	Europe	Job displacement
Wang et al. ⁽⁵⁵⁾	2021	NA	Qualitative	Asia	Increase productivity, content creation
Meena et al. ⁽⁵⁶⁾	2020	NA	Qualitative	Asia	increased productivity
Aissani et al. ⁽⁵⁷⁾	2023	NA	Qualitative	Asia	Deep fake news and information, news bias, job displacement
Túñez-López et al. ⁽⁵⁸⁾	2019	Deontology	Qualitative	Europe	Job displacement, innovation, creativity
Rashedi et al. ⁽⁵⁹⁾	2019	NA	Qualitative	Asia	Job displacement
Kieslich et al. ⁽⁶⁰⁾	2021	NA	Qualitative	Europe	Increase productivity, transparency
Broussard et al. ⁽⁶¹⁾	2019	NA	Qualitative	Asia	Algorithm bias
Kothari et al. ⁽⁶²⁾	2022	Gate keeping theory	Qualitative	Africa	Increased productivity, transparency
Jamil ⁽⁶³⁾	2021	Communication theory	Qualitative	Asia	Deep fakes
Lewis ⁽⁶⁴⁾	2015	Conceptual framework	Qualitative	Continental perspective	Algorithm bias
Bender ⁽⁶⁵⁾	2023	Theory-practice nexus	Qualitative	Oceania	Creativity, increased productivity,
Borchardt ⁽⁶⁶⁾	2022	NA	Qualitative	Europe	Innovations, creativity
Soto-Sanfiel et al. ⁽⁶⁷⁾	2022	Technology Acceptance Model	Quantitative	North America	Risk of job loss
Arrese ⁽⁶⁸⁾	2022	Economic theory	Qualitative	Europe	Innovation
Sun et al. ⁽⁶⁹⁾	2024	NA	Quantitative	Asia	Transparency
Moran et al. ⁽⁷⁰⁾	2022	NA	Qualitative	Continental perspectives	Innovation and creativity
Vergeer ⁽⁷¹⁾	2020	NA	Quantitative	Europe	Deep fakes
Li et al. ⁽⁷²⁾	2024	Theory of third-person effect	Quantitative	Asia	Increased productivity
Prayogi et al. ⁽⁷³⁾	2020	Vincent Mosco's political economy theory	Qualitative	Asia	Deep fakes
de Araujo ⁽⁷⁴⁾	2017	James-Lang Theory, Cannon-Bard Theory, Schachter-Singer Theory	Qualitative	Europe	Algorithm bias
McFadden ⁽⁷⁵⁾	2024	Economic theory	Quantitative	Continental perspectives	Increased productivity, innovation
Kuyucu ⁽⁷⁶⁾	2019	Economic theory	Qualitative	Europe	Increased productivity, creativity.
Lewis et al. ⁽⁷⁷⁾	2015	Economic theory	Qualitative	Continental perspectives	Algorithm bias

Bibliometric characteristics of research on economic implications of AI on media industries

The study reveals that of the 65 articles reviewed, 63 % (n = 41) lacked a theoretical foundation, while 37 % (n = 24) were grounded in theoretical constructs. Of these studies, the most frequently used theories by frequency of mention are economic theory,^(68,76,75) technological determinism,^(35,48) and the technology acceptance model.^(46,67) The articles included in this review were published across a wide range of journals spanning the fields of communication, journalism, and artificial intelligence. As shown in Table 2 below, Journalism Practice had the most number of publications (12 %, n = 8), followed by Digital Journalism (8 %, n = 5) and Journalism Studies (5 %, n=3). Other journals such as NECSUS, Journalism & Mass Communication Quarterly, and

Media, Culture & Society contributed two articles each while the remaining journals published one article each.

As shown in table 1 above, the yearly distribution of research on economic implications of AI on media industries over a decade (2014–2024) shows steady growth between 2022 and 2024 with 2022 recording the highest number of publications (26 %, n=17). From the analysis, the year 2024 seems promising considering the number of articles recorded (20 %, n=13), even though the data was collected during the first half of the year. However, 2014 did not record any publication per the literature search. Research on the economic implications of AI on media industries has been predominantly underpinned by the qualitative research approach (83 %, n=54), followed by the quantitative research approach (12 %, n=8), and mixed methods

(5 %, n=3). Even though the geospatial distribution of the articles was widely spread in five instead of the six continents, with an additional slot for continental perspectives, which presents an overlap of the regional distribution (where the research was conducted in more than one continent), it is also important to establish that AI research also makes up for a growing share of

media economics publications overall and per region. Details of the geographical distribution of the articles are: Europe-39 %, n=25; North America-6 %, n=4; Asia-31 %, n=20; Africa-6 %, n=4; Oceania-3 %, n=2; and Continental overlap-15 %, n = 10. There was no article recorded in South America.

Table 2. Publisher information

Journal	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
Tennessee Journal of Law and Policy								*				1
International Journal of Technology and Education Research									*			1
International Journal for Research in Applied Science and Engineering Technology										*		1
Journalism and Media									*		*	1
NECSUS										*	*	2
Asian Journal of Research in Computer Science										*		1
AI Magazine										*		1
Revista Latina de Comunicación Social						*						1
Humanities and Social Sciences							*					1
Journal of Communication and Management								*				1
Journal of Interactive Marketing					*							1
Journalism & Mass Communication Quarterly						**						2
Media, Culture & Society								*	*			2
Journalism									*			1
Journalism Practice							*	*	*	**	***	8
Media Practice and Education										*		1
Digital Journalism		**					*			**		5
İletişim Kuram ve Araştırma Dergisi										*		1
Journal of Namibian Studies								*				1
Communication & Society								*				1
Journal of the Association for Information Science and Technology							*					1
Open Journal for Sociological Studies								*				1
Journal of Research and Community Service										*		1
Future Internet				*								1
Electronic Markets			*									1
Journal of Physics: Conference Series								*				1
Our Heritage								*				1
Revista latina de comunicación social						*						1
African Journalism Studies							*					1
Media Practice and Education									*			1
Journalism Studies										***		3
Indonesia Journal								*				1
Conference and Thesis	*				***	****		***	*****	*		17

Note: NB: each asterisk indicates the year and number of articles published by the journal.

Economic implications of AI on media industries

AI technologies have transformed many sectors, especially the media industry. The study reveals that AI's integration into media operations has reshaped traditional economic activities, offering unprecedented opportunities for efficiency, creativity and profitability. This transformation is driven by AI's ability to automate routine tasks, analyze vast amounts of data, and personalize content delivery, thereby enhancing both production and consumption processes. The study identifies three main themes relating to the economic implications of AI on media industries (job performance, economic hardship, and ethical challenges), each with distinct subthemes.

Job performance

AI is rapidly transforming the media industry, reshaping how

content is created, distributed and consumed. This transformation has profound implications for job performance and the economic activities within the sector. As AI technologies become more sophisticated, they influence various facets of media operations, driven by innovation, creativity and productivity. Innovation is at the heart of AI's influence on the economic activities of media industries, driving transformation in how media contents are produced, distributed and monetized. The infusion of AI into media operations has not only streamlined existing processes but also unlocked new opportunities for growth and competitive advantage. Traditional media production, which often involved significant time and resources, is being enhanced by AI technologies that can generate content more efficiently. AI algorithms can now write articles, produce videos and even create music. This allows media companies to scale

content production without proportional increases in human labor, reducing costs while maintaining or even improving output quality. AI technologies enhance creative processes by offering tools that can generate content, suggest story ideas, and streamline editing, thereby allowing media professionals to focus on higher-order tasks. This technological synergy facilitates a level of creativity previously unattainable, as AI can analyze vast amounts of data to uncover trends and insights that inform creative decisions. Subsequently, AI enhances audience engagement through personalized content recommendations, ensuring that consumers receive media tailored to their interests, thereby boosting consumption and revenue streams. Additionally, this innovation and creativity of AI-driven automation improves productivity by handling routine and repetitive tasks, enabling media companies to produce more content at a faster rate and with greater precision.

The findings present a rich account and valuable insights on the economic implications of AI on media industries, especially under job performance. While the study categorizes these subthemes distinctly, a deeper insight emerges when considering how these elements interact. Innovation fuels creativity by introducing new tools and workflows (e.g., Generative AI for scriptwriting). Creativity, in turn, enhances productivity as AI-generated ideas and content accelerate development cycles. Productivity reinforces innovation by freeing up time and resources to invest in exploratory and experimental practices. AI's influence on job performance is not merely additive but synergistic. The real economic value emerges from how innovation, creativity and productivity reinforce one another in a cyclical loop of continuous improvement.

Economic hardship

The rapid integration of AI into media industries is transforming traditional workflows and economic structures, with one of the most significant implications being job displacement. The study reveals that AI technologies, with their capabilities in automating routine tasks, data analysis, and content generation, are redefining roles that once relied heavily on human input. For instance, algorithms now curate news feeds, write articles and even produce multimedia content, tasks that previously required skilled journalists, editors and content creators. This shift is causing a considerable reallocation of labor, where some positions are being rendered obsolete while new, AI-centric roles emerge.

AI-driven platforms are reshaping traditional market structures by enabling the development of new, more flexible business models that cater to individual preferences and real-time demands. This shift is particularly evident in industries like media, entertainment and news, where personalized, on-demand services are rapidly replacing traditional standardized offerings. Traditional market structures often rely on a one-size-fits-all approach, where products or services are designed for a broad audience with minimal customization. For example, traditional television channels offer a fixed schedule of programming, and newspapers provide a standard set of news articles to all readers. These models, while effective in the past, are limited in their ability to cater to individual preferences. AI-driven platforms, on the other hand, use vast amounts of user data to understand individual tastes, behaviors and preferences. By analyzing this data, AI can tailor content to meet the specific needs of each user.

Ethical challenges

The study highlights that the incorporation of AI into the media industry brings forth a host of ethical challenges that have significant economic implications. As AI technologies become more prevalent in content creation, distribution and consumption, concerns about transparency arise. Media companies often rely on proprietary algorithms that lack transparency, making it difficult for users to understand how content is curated and presented. Another ethical challenge identified from the study is algorithm bias. AI-driven algorithms can inadvertently perpetuate biases, leading to skewed representations and unfair treatment of certain groups. This not only undermines public trust in media but also has financial repercussions, as advertisers and audiences may turn away from platforms perceived as unethical. The study further revealed that deepfakes represent one of the most pressing ethical implications of AI on the economic activities of media industries. These AI-generated synthetic media, which convincingly mimic real people's appearances, voices and actions, pose significant challenges to the credibility, trust and financial viability of media organizations. Deepfakes undermine the foundational trust that media consumers place in news outlets and other media sources. When consumers become aware that AI can create highly realistic yet entirely fabricated content, skepticism towards all media content will increase.

DISCUSSION

This paper aims to give a summary of the literature on the economic implications of AI on media industries. The inclusion and exclusion analysis highlights the rigor of the selection process, with only 1,36 % (n = 65) of 4,794 initially identified articles meeting the eligibility criteria. This reflects both the breadth of literature on AI and media and the scarcity of focused studies on its economic implications, underscoring the need for more targeted research in this domain. The bibliometric characteristics of research on the economic implications of AI on media industries reveal themes such as theoretical and journal analysis, yearly distribution of research, research methods, and geographical context of studies.

The study reveals that most of the articles reviewed lacked a theoretical foundation, while a smaller proportion were grounded in theoretical constructs. The dominance of articles that did not ground their findings in theoretical construct is exemplified in the works of Tejedor et al.⁽⁵⁰⁾ who explored exo journalism by analyzing the impact of AI on the journalism industry. Drawing on documentary analysis, case studies and in-depth interviews, they suggested that AI fosters innovation and personalization in journalistic content and enhances professional practices. Likewise, Díaz-Noci⁽⁴⁹⁾ examined the legal dimensions of AI-assisted journalism, particularly regarding copyright, and concluded that economic intellectual property rights remain protected through the notion of collective works. Although these studies offer useful information about how AI affects journalism and its legal issues, their results are not based on theories, which makes their conclusions less convincing and harder to apply in other situations. This finding resonates with the view of Adom et al.⁽⁷⁸⁾ who argue that theories direct a study's course and provide the basis for proving its legitimacy. We argue that the lack of theoretical grounding in the majority of the studies suggests a significant gap in conceptual rigor, limiting the depth, coherence, and generalizability of their findings within the broader field of journalism and AI research. The study

reveals that the most frequently used theories by frequency of mention are economic theory, technological determinism, and the technology acceptance model.

The economic theory helps in understanding economic behavior and predicting the outcomes of changes in variables such as technology, policy or market conditions. Using the economic theory, Arrese⁽⁶⁸⁾ examined the intersection between economic journalism and data journalism and argues that data journalism can extract some lessons from economic news in order to improve the extension of data stories to every news beat. Kuyucu⁽⁷⁶⁾ also investigated the place of media economics in the economic theory. The study revealed that media products are not ordinary goods but rather, they carry externalities and can shape political power and societal behavior. The rise of AI adds further advantage, influencing how media contents are produced, consumed and monetized. As AI transforms media economics, traditional micro and macroeconomic models become inadequate. This demands more advanced tools such as general equilibrium models, micro-founded macroeconomic models, and analysis of alternative costs.⁽⁷⁶⁾ Furthermore, McFadden⁽⁷⁵⁾ explored the implications of the economic theory for media industries. The study highlights that economic theory of media consumption emphasizes the need to apply economic principles to media operations by recognizing individuals allocated time based on expected utility from media sources. Since only limited activities can occur alongside structured tasks, economic theory helps define media demand, guiding firm strategies and informing analyses of market structure and consumer behavior. Furthermore, economic theory provides a robust analytical lens through which researchers can understand and evaluate the economic implications of AI on media industries. Through the application of microeconomics, macroeconomics, labor economics and industrial organizational principles, scholars can uncover how AI transforms production, labor, market dynamics, and value creation within the media landscape.

Technological determinism highlights that technology is the principal driver of societal change.⁽⁷⁹⁾ Within the media industry, this theory underscores how advancements like AI are not just tools but transformative forces that redefine economic structures and workflows. This finding reflects the study of Al Adwan et al.⁽³⁵⁾ which explored the influence of AI applications on the media. The study revealed a significant rise in the adoption of AI within the media industries. Additionally, Khan⁽⁴⁸⁾ investigated the influence of AI on various aspects of the media industry, including labor dynamics, content creation and curation, media distribution and consumption, advertising strategies, and theoretical foundations. The study highlights how AI has transformed the industry by enabling automated data analysis, improving content development and personalization, optimizing advertising approaches, reshaping workforce structures, and raising significant ethical concerns. The use of technological determinism in research provides a strong theoretical lens for understanding how AI fundamentally reshapes media practices and economic structures, as demonstrated in the studies by Al Adwan et al.⁽³⁵⁾ and Khan.⁽⁴⁸⁾

The Technology Acceptance Model (TAM) is among the most extensively used frameworks for understanding users' acceptance and use of technology.⁽⁸⁰⁾ The model highlights that perceived usefulness and perceived ease of use determine an individual's intention to adopt and use a particular technology.⁽⁸¹⁾ Using the TAM, Soto-Sanfiel et al.⁽⁶⁷⁾ compared the relationship

between Latin American journalists and their use of AI. The key findings indicate that variations in journalists' attitudes and knowledge about AI are influenced by their cultural context. At the same time, their perspectives also exhibit similarities to those of journalists from northern countries regarding AI adoption. Pandiyaraj et al.⁽⁴⁶⁾ investigated the exploration and adoption of generative AI in digital media production. Their study emphasizes a steady adoption of generative AI tools by rural students for use in their media production projects. The TAM is important in assessing how media professionals' perceptions of AI's usefulness and ease of use influence AI's adoption.

The study reveals that, out of the 65 articles examined, Journalism Practice had the most number of publications, followed by Digital Journalism. This finding aligns with the aims and scope of these two journals, which emphasize the advancement of research into digital journalism studies and providing opportunities for reflective, critical, and research-based studies on the professional practice of journalism and media studies. Analysis of the journals that have published research on the economic implications of AI on media industries is essential because it will help future researchers identify which journals to submit their work to.

The yearly distribution of research shows a steady growth between 2022 and 2024 with 2022 recording the highest number of publications. This steady growth reveals the continuous scholarly attention and interest the field is receiving. This finding resonates with the view of Jones et al.⁽⁸²⁾ who indicate that there is growing adoption of algorithmic systems in journalism practice. From the analysis, the year 2024 seems promising considering the number of articles recorded (19 %, n=12), even though the data was collected during the first half of the year. However, 2014 did not record any publication per the literature search. This may be partially due to the fact that researchers at the time were just fostering the idea of conducting studies in the field; hence the phenomenon of AI's economic repercussions on media industries was still in its early stages.

The study reveals three main research methods: qualitative, quantitative, and mixed, with qualitative research accounting for the highest number of publications. The predominance of qualitative research in the studies examined highlights the strengths of this research approach and is justifiable given the emergent nature of the field. Furthermore, qualitative research methods allow researchers to explore participants' perspectives, motivations and evolving experiences in rich detail that quantitative approaches may overlook. Studies such as those conducted by Adjin Tettey et al.⁽⁶⁾ Sirén-Heikel et al.⁽⁴²⁾, Jamil⁽⁶³⁾ and Ji et al.⁽³⁰⁾ affirm this trend, showing how interviews, documents, content, and textual analysis can uncover deep insights into AI research. For example, Sirén-Heikel et al.⁽⁴²⁾ through interviews with industry practitioners, found that technologists manage tensions with journalistic norms by categorizing AI-generated stories as non-journalistic, framing their tools as enhancements to journalism. Similarly, Ji et al.⁽³⁰⁾ using textual analysis, examined how Chinese news media portray AI and discovered that journalists expressed skepticism about various elements of algorithmic systems, advocating for immediate regulatory action at the national level. These findings underscore the value of qualitative research in uncovering the complex and context-specific ways that media practitioners navigate in their integration of AI technologies.

Even though the geospatial distribution of the articles was

widely spread in five instead of the six continents, with an additional slot for continental perspectives, which presents an overlap of the regional distribution, it is also important to establish that AI research also makes up for a growing share of media economics publications overall and per region. Geographically, most of the articles originated from Europe and Asia, with fewer contributions from North America, Africa, and Oceania. A notable share reflected cross-continental collaborations, while no article was recorded from South America. Notwithstanding, the limited representation of Global South perspectives, particularly the absence of studies from South America and the minimal contributions from Africa and Oceania, highlights a significant gap in the global understanding of the economic implications of AI on media industries. This is particularly concerning as similar underrepresentation has been established in the economic and AI literature. For instance the systematic review of Okolo et al.⁽⁸³⁾ document that although Explainable AI is a rapidly growing area of research, most of the research has focused on contexts in the Global North, and little is known about its deployment in the Global South. Furthermore, through a bibliometric analysis of scholarly network of AI research in the Global North and South, Tang et al.⁽⁸⁴⁾ highlight that AI research in the Global South remains limited as compared to the Global North. Within the economic literature, Amarante et al.⁽⁸⁵⁾ make similar observations arguing that even the small number of research on economic issues in the Global South are conducted by researchers from the Global North. Damme et al.⁽⁸⁶⁾ and Veugelers et al.⁽⁸⁷⁾ reveal that this geospatial disparity is attributed to the access of robust research funding in the Global North in expanding scholarship, a luxury not equally available in many parts of the Global South. This imbalance calls for more inclusive and collaborative global research initiatives that intentionally engage scholars from underrepresented regions. For example, Veugelers et al.⁽⁸⁷⁾ contend that research and innovation (R&I) has been firmly embedded as an engine for growth among the European Union, with the European Research Council (ERC) providing a lot of funding to support the exchange of ideas in all fields of study.

Focusing on the economic implications of AI on media industries, the study reveals that AI offers opportunities for efficiency, creativity, and profitability with positive impacts on job performance, innovation, creativity, and productivity. The findings on AI's transformative effect on job performance in the media aligns with previous studies that have indicated the transformative role of AI on media industries.^(2,26,50) Consistent with the findings on AI driving innovation in the economic activities of media industries, Tejedor et al.⁽⁵⁰⁾ corroborate that AI is a source of innovation and personalization of journalistic content and that it can contribute to the improvement of professional practice. These innovations not only cut costs but also open up new revenue streams by enabling the production of a broader range of content. AI technologies enhancement of the creative processes support Totlani's⁽²²⁾ assertion that a new era of creativity and efficiency has been ushered in by Generative AI, which is powered by models like GPT-3, DALL-E, and sophisticated algorithms like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs). The possibilities in the media industry are broadened by these applications, which provide professionals in the field and creators with new tools to enhance their creativity and effectively engage consumers. Totlani⁽²²⁾ emphasizes that AI functions as a creative hub, bringing together various elements to enable fresh content

creation and improvement. It supports visual effects, simplifies scriptwriting and storytelling, provides personalized content recommendations, and optimizes post-production workflows. AI's impact on creativity is particularly profound. Lee⁽²⁶⁾ avers that Generative AI models can assist in creating multimedia content, from writing articles and scripts to producing videos and music, expanding the boundaries of traditional media production. Similarly, Arya et al.⁽³⁾ and Chow⁽⁷⁾ indicate that the media industry has had the greatest growth. These scholars further contend that Generative AI helps media companies improve their workflows, develop original content and enhance user experiences. This not only democratizes content creation, allowing smaller players to compete with established entities, but also fosters a diverse array of creative expressions. Fauzi⁽²¹⁾ explains that AI has made it possible for businesses to increase efficiency and productivity by lowering costs and shortening the time needed to complete tasks. However, this technological evolution also demands a reevaluation of traditional business models and workforce dynamics. We argue that media professionals must adapt to new tools and methodologies, while companies need to balance the benefits of automation with the preservation of human creativity and judgment. As AI continues to evolve, its role in driving economic growth through innovation, creativity and productivity in the media industry will only become more pronounced.

While the study categorizes these subthemes distinctly, a deeper insight emerges when considering how these elements interact. Innovation fuels creativity by introducing new tools and workflows (e.g., Generative AI for scriptwriting). Creativity, in turn, enhances productivity as AI-generated ideas and content accelerate development cycles. Productivity reinforces innovation by freeing up time and resources to invest in exploratory and experimental practices. AI's influence on job performance is not merely additive but synergistic. The real economic value emerges from how innovation, creativity and productivity reinforce one another in a cyclical loop of continuous improvement.

While we observe positive economic implications of AI integration in media businesses, the findings also reveal negative impacts of this integration like job displacement, disruption of traditional markets, and ethical challenges. AI technologies' capabilities of automating routine tasks, data analysis, and content generation, are displacing some job roles. While new, AI-centric roles emerge. The results of this study are consistent with earlier research. The results of a study by Bender⁽⁶⁵⁾ aligned with the idea that AI may replace jobs. This researcher discussed how generative AI is revolutionizing the creative media and arts sectors. The scholar expressed worries about the loss of human creative labor in the media sector as AI gains traction. This aligns with the findings of Kumar et al.⁽⁸⁸⁾ study, which showed that giving AI systems more autonomy may result in job displacement, a situation in which automation progressively takes the place of human roles and leaves a sizable gap in the labor market. Scholars such as Russell et al.⁽¹¹⁾ and Chui⁽¹⁶⁾ have also raised similar concerns of possible job displacement as a result of AI being used in the media industry. The economic impact of AI-induced job displacement is multifaceted. On one hand, media companies can achieve greater efficiency and cost savings by reducing the need for large human workforces in certain areas. According to Adjin-Tettey⁽⁶⁾ using AI in the media industry improves efficiency, precision and quality of

information. On the other hand, this technological upheaval poses significant challenges for workers who find their skills becoming redundant. The displacement not only affects those directly employed in media production but also has broader implications for related sectors such as advertising, marketing and distribution.⁽⁸⁹⁾ Additionally, there is a growing need for new skill sets centered around AI operation, data analysis, and technology management, leading to a demand for retraining and upskilling initiatives. To remain relevant in the rapidly evolving media industry, we argue that journalists must adapt and enhance their skills to complement AI technologies. Latar⁽⁹⁰⁾ indicates that rather than seeing AI as a threat, journalists can learn to collaborate with AI systems. For instance, using AI to handle preliminary data collection and analysis allows journalists to focus on higher-level tasks that require human judgment.

AI-driven platforms are reshaping traditional market structures. Willig⁽⁴⁾ contends that AI-driven platforms, use vast amounts of user data to understand individual tastes, behaviors and preferences. By analyzing this data, AI can tailor content to meet the specific needs of each user. This finding aligns with Rouser's⁽²⁰⁾ study, which noted that a major economic challenge lies in the disruption of traditional markets, as new entrants leverage data collection and manipulation more efficiently. Newcomers leveraging AI scraping to gain insights and market share may cause established businesses to struggle to compete. The use of AI scraping by newcomers to obtain market share and insights could make it difficult for existing companies to compete.⁽⁴⁷⁾ While the thematic validation is consistent with existing literature and reporting, the findings offer *new insights on* job displacement and market disruption. Economic hardship stems not from AI alone, but from its dual disruption of both labor and market ecosystems. The displacement of labor is a consequence of *structural market realignment*, where traditional value chains are being dissolved. Furthermore, the rise of AI is accelerating labor polarization, creating a two-tier workforce in the media: a small elite of tech-savvy professionals and a displaced majority facing reskilling pressures. The power of data-centric AI platforms lies not just in content creation but in audience capture and behavioral prediction, which can displace traditional gatekeeping functions of legacy media.

The reliance of media companies on proprietary algorithms that lack transparency, makes it difficult for users to understand how content is curated and presented. This opacity can lead to accusations of manipulation and censorship, further impacting

economic performance as user engagement declines. Gutiérrez-Caneda et al.⁽⁹¹⁾ argue that while AI is generating excitement these days due to its potential to streamline and improve media activities, there are also risks and challenges due to a lack of transparency from the perspectives in scientific computing and socio-legalities. A key ethical challenge is that of AI-driven algorithms ability to perpetuate biases that misrepresent certain groups. In line with the study's finding, Gondwe⁽⁹²⁾ indicates that several academics have shown concern about algorithmic biases in news creation, collection, production, and distribution which has created a challenge between what users need and want. Dörr et al.⁽³³⁾ support these findings, noting that the growing institutionalization of algorithms as content producers is reshaping professional journalism and introducing new ethical challenges. Deepfakes also pose significant challenges to the credibility, trust and financial viability of media organizations as they undermine the trust media consumer's repose in media outlets. This erosion of trust can lead to a decline in audience engagement, as people may become more reluctant to consume or pay for news, entertainment and other media products. Jamil⁽²⁸⁾ avers that the use of AI in generating deepfakes and misleading content presents ethical dilemmas that can damage reputations and erode credibility. In this direction, media companies must navigate the fine line between using AI for efficiency and ensuring the integrity of their content. This is important because the economic cost of ethical lapses can be substantial, involving legal liabilities, loss of consumer trust and the potential for regulatory penalties.

Synthesis on the ethical challenges relating to transparency, algorithmic bias and deepfakes provides deeper insights and suggests new intersections that go beyond confirming existing knowledge. Table 3 below provides detailed analysis of the relationship between the ethical challenges and their economic consequences. Firstly, these ethical issues rarely exist in isolation. For instance, algorithm bias is often intensified by a lack of transparency, making it more difficult and expensive to correct. Similarly, the convergence of deepfakes and personalized algorithms can enable the targeted spread of disinformation, thereby manipulating audiences more effectively. Secondly, the pursuit of efficiency and hyper-personalization through AI introduces a trade-off between innovation and trust. Over-personalization can result in manipulative content loops, leading to algorithmic fatigue and diminishing user engagement over time. Thirdly, the long-term value of a media brand is

Table 3. Interconnected ethical challenges and their economic consequences.

Ethical challenge	Economic impact	Interconnected outcome	Examples	Long-term strategic implications
Lack of transparency	Audience disengagement and loss of advertisement revenue	Perceived manipulation leads to user attrition and declining platform loyalty	Opaque newsfeed algorithms and no disclosure of AI-generated content	The need for explainable AI systems and increased demand for third-party algorithm audits
Algorithm bias	Market exclusion of minority groups and reputational harm	Skewed content weakens inclusivity, shrinking audiences, and declining investor confidence	Underrepresentation of marginalized voices and biased political or racial profiling in news filtering	Potential lawsuits. Corporate social responsibility mandates in content governance
Deepfakes	Loss of trust in media content, regulatory penalties and fines	Decreased content value leads to reduced monetization	Fake political speeches or celebrity videos, AI-generated hoaxes spreading virally	Rising cost of content verification, and pressure to invest in AI-detection and forensics tools

increasingly linked to its ethical use of AI. Audiences and advertisers are becoming more conscious of how AI tools are used, favoring organizations that prioritize fairness, transparency and accountability. Finally, ethical AI governance is emerging as a source of competitive advantage. It is no longer just a matter of regulatory compliance but a strategic imperative. Media companies that integrate ethical standards into their AI practices are better positioned to thrive in competitive and increasingly skeptical media markets. These insights urge stakeholders to consider ethics as central to sustainable innovation.

CONCLUSIONS

This SLR has provided a comprehensive analysis of the economic implications of AI on media industries. The findings indicate that a significant portion of the studies did not use theoretical framework to ground their findings. This highlights a gap in the integration of theoretical constructs in AI research within media industries. The absence of theories may limit the depth of understanding and scholarly discussion. This is important because theories provide essential guidance for research and interpretation of findings. In terms of journal analysis, Journalism Practice and Digital Journalism emerged as leading outlets for research in the field, providing valuable guidance for future scholars seeking publication venues. The number of publications shown a steady increase from 2022 to 2024, reflecting growing scholarly interest and attention on the economic implications of AI on media industries. The year 2024, in particular, seems promising considering the number of articles recorded, even though the data was collected during the first half of the year. The articles selected for the study were distributed across five continents, with Europe and Asia being the most active regions. However, there is a notable absence of research from South America, indicating a need for more global collaboration and inclusivity in future studies. Furthermore, the study reveals that research on the economic implications of AI on media industries is predominantly qualitative, with limited use of quantitative and mixed methods. This trend aligns with previous literature, though it highlights a need for more diverse research approaches to develop robust theoretical frameworks and broader empirical insights.

The study further reveals that the integration of AI on media industries has significantly impacted economic activities, primarily through job performance, economic hardship, and ethical challenges. AI is transforming the media industry by enhancing job performance through innovation, creativity, and productivity. This enables faster, more efficient, and cost-effective content production while boosting audience engagement and revenue. Its economic value lies in the synergy between these elements: creating a continuous cycle of improvement where innovation fuels creativity, creativity drives productivity, and productivity reinforces further innovation. The integration of AI into media industries is displacing traditional jobs by automating tasks such as news curation, article writing, and multimedia production, while simultaneously creating new AI-focused roles. At the same time, AI-driven platforms are transforming market structures by replacing standardized offerings with personalized and on-demand services tailored to individual user preferences. The integration of AI into the media industry raises ethical concerns such as lack of transparency, algorithmic bias, and the proliferation of deepfakes, all of which threaten public trust. These challenges have direct economic implications, as

diminished credibility and audience skepticism can drive away both consumers and advertisers, undermining the financial sustainability of media organizations.

Limitations

There are several limitations of this study. Given that other good research articles may also be published in non-English speaking journals, limiting the review to gray literature and peer-reviewed articles exclusively may have reduced its comprehensiveness. The authors, however, limited themselves to English-language due to their lack of proficiency in other languages. Furthermore, the review may have missed important research because of the search strings and the focus on a single decade (2014–2024). The study also combined various databases (EBSCOhost, Google Scholar, ResearchGate and Scopus), leading to inconsistencies in the bibliometric metadata. This restricted the authors' ability to discuss the impact indicators. In order to gain a more comprehensive knowledge of the phenomenon, future research should focus on these and other gaps. However, these setbacks in no way take away from the insightful findings of this study.

Future research directions on economic implications of AI on media industries

The economic implications of AI on media industries present a dynamic and evolving field of study, necessitating future research to fully understand its impact. The study highlights future research avenues that need exploration. Key research areas include determining effective strategies for balancing AI's potential with ethical journalism,⁽⁶⁾ exploring ownership cultures that promote media freedom and pluralism,⁽⁵⁾ investigating AI technology economies and national security to influence global politics,⁽³⁾ and exploring the ethical and legal dilemmas arising from the use of automation.⁽²⁸⁾ Further investigation is also needed into assessing journalistic role performance in global news media's coverage of AI,⁽²⁵⁾ interrogating audiences' perception of AI-produced news stories,⁽³¹⁾ the influence of AI on creative industries and journalism,⁽⁴²⁾ and exploring the realm of content creation and curation in AI.⁽⁶⁷⁾ As AI continues to reshape the media landscape, these areas of research will provide critical insights for navigating this transformative era.

RECOMMENDATIONS

This study holds significant contributions to scholarship across the globe by providing detailed analysis of the geographical distribution of research on the economic implications of AI on media industries. In our view, this SLR raises new questions, such as how AI-induced economic hardship impacts the diversity and plurality of media or how AI's ethical challenges affect public trust in media. These questions could guide future studies and theoretical developments in media and communication scholarship. The study recommends more research in the Global South, especially in South America, Africa and Oceania, where research on the economic implications of AI on media industries appears to be limited. To remain relevant in the rapidly evolving media industry, the study encourages journalists to adapt and enhance their skills to complement AI technologies. Similarly, the study recommends media industries to balance the benefits of automation with the preservation of human creativity and judgment.

FINANCING

The authors did not receive financing for the development of this research.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION

Conceptualization: Samuel Danso.

Data curation: Samuel Danso, Solace Yawa Asafo.

Formal analysis: Samuel Danso, Ebenezer Ato Kwamena Aidoo.

Research: Samuel Danso, Solace Yawa Asafo, Frederick Kaayeng.

Methodology: Samuel Danso, Ebenezer Ato Kwamena Aidoo.

Project management: Samuel Danso.

Supervision: Samuel Danso, Solace Yawa Asafo.

Drafting - original draft: Samuel Danso, Solace Yawa Asafo, Frederick Kaayeng.

Writing - proofreading and editing: Samuel Danso, Solace Yawa Asafo, Ebenezer Ato Kwamena.

BIBLIOGRAPHIC REFERENCES

1. Debie SA. Smart media or biased media: The impacts and challenges of AI and Big Data on the media industry". *Asian Journal of Research in Computer Science.* 2024; 17 (7):128-44. <https://doi.org/10.9734/ajrcos/2024/v17i7484>
2. de Bustos JCM, Izquierdo-Castillo J. Who will control the media? The impact of GAFAM on the media industries in the digital economy. *Revista Latina de Comunicación Social.* 2019; 74: 803-821. <https://doi.org/10.4185/RLCS-2019-1358en>
3. Arya S, Sharma G. Generative AI images and Indian media industry: An overview of opportunities and challenges. *Journal of Communication and Management.* 2023; 2(04):271-274.<https://doi.org/10.58966/JCM2023249>
4. Willig I. From audiences to data points: The role of media agencies in the platformization of the news media industry. *Media, Culture & Society.* 2022; 44(1):56-71.<https://doi.org/10.1177/01634437211029861>
5. Sjøvaag H. The business of news in the AI economy. *AI Magazine.* 2024.
6. Adjin-Tettey TD, Muringa T, Danso S, et al. The role of artificial intelligence in contemporary journalism practice in two African countries. *Journalism and Media.* 2024; 5(3):846-860.<https://doi.org/10.3390/journalmedia5030054>
7. Chow, PS. Ghost in the (Hollywood) machine: Emergent applications of artificial intelligence in the film industry. *NECSUS_European Journal of Media Studies.* 2020; 9(1):193-214.
8. Chandler D, Munday R. A dictionary of social media. Oxford University Press. 2016.
9. Poole DI, Goebel RG, Mackworth AK. Computational intelligence (Vol. 1). Oxford: Oxford University Press. 1998.
10. Bellman RE. An introduction to artificial intelligence: Can computers think? Boyd & Fraser Publishing Company. 1978.
11. Russell S, Norvig P. Artificial intelligence: A modern approach (3rd ed.). Prentice- Approach. Oxford University Press. 2010.
12. Charniak E, McDermott D. Introduction to artificial intelligence. Addison-Wesley. 1985.
13. Lu Y, Zhou Y. A review on the economics of artificial intelligence. *Journal of Economic Surveys.* 2021; 35(4):1045-1072. <https://doi.org/10.1111/joes.12422>
14. Pennycook G, Rand DG. Fighting misinformation on social media using Crowdsourced judgments of news source quality. *Proceedings of the National Academy of Sciences.* 2021; 116(7):2521-2526. <https://doi.org/10.1073/pnas.1806781116>
15. Cath C. Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.* 2018; 376(2133):1-8. <https://doi.org/10.1098/rsta.2018.0080>
16. Chui M. The state of AI in 2022 and a half decade in review. McKinsey & Company. 2022.
17. Danso S, Fosu M, Ntem MTK. Citizen Journalism in Africa: A systematic literature review. *Journal of Applied Journalism and Media Studies.* 2024; 1-24. https://doi.org/10.1386/ajms_00141_1
18. Ampomah PN, Atianashie AM. Navigating the new frontier: A comprehensive review of AI in journalism. *Advances in Journalism and Communication.* 2024; 12(1):1-17.<https://doi.org/10.4236/ajc.2024.121001>
19. Braun V, Clarke V. Using thematic analysis in psychology. *Qualitative Research in Psychology.* 2006; 3(2):77-101. <https://doi.org/10.1111/1478088706qp063oa>
20. Rouser S. Unfair Competition in the Creative Industries: The Impact of AI Scraping. *Tennessee Journal of Law and Policy.* 2024; 16(3): 134-176. : <https://doi.org/10.70658/1940-4131.1169>
21. Fauzi I. The utilization of media technology in industrial transformation and development of local creative industries. *International Journal of Technology and Education Research.* 2024; 2(02):115-127.
22. Totlani K. The evolution of generative AI: Implications for the media and film industry. *International Journal for Research in Applied Science and Engineering Technology.* 2023; 11(10):973-980. <https://doi.org/10.22214/ijraset.2023.56140>
23. Horska K. A new test of Artificial Intelligence: Should the media industry be afraid? *Humanities and Social Sciences.* 2020; 8(39):26-29.
24. Del Barrio-García S, Kamakura WA, Luque-Martínez T. A longitudinal cross-product analysis of media-budget allocations: how economic and technological disruptions affected media choices across industries. *Journal of Interactive Marketing.* 2019; 45(1): 1-15. <https://doi.org/10.1016/j.intmar.2018.05.004>
25. Ji SW. The internet and changes in the media industry: a 5-year cross-national examination of media industries for 51 countries. *Journalism & Mass Communication Quarterly.* 2019; 96(3):894-918.
26. Lee HK. Rethinking creativity: creative industries, AI and everyday creativity. *Media, Culture & Society.* 2022; 44(3):601-612. <https://doi.org/10.1177/01634437221077009>
27. Zabaleta I, Xamardo N. Economy and funding of European minority language media: Reality and impact of digitalization and economic crisis. *Journalism.* 2022; 23(5):1149-1168. <https://doi.org/10.1177/1464884920954039>
28. Jamil S. Automated journalism and the freedom of media: Understanding legal and ethical implications in competitive authoritarian regime. *Journalism Practice.* 2023; 17(6):1115-1138. <https://doi.org/10.1080/17512786.2021.1981148>
29. Bender S. Generative-AI, the media industries, and the disappearance of human creative labour. *Media Practice and Education.* 2024; 1-18. <https://doi.org/10.1080/25741136.2024.2355597>
30. Ji X, Kuai J, Zamith R. Scrutinizing algorithms: assessing journalistic role performance in Chinese news media's coverage of Artificial Intelligence. *Journalism Practice.* 2024; 1-18. <https://doi.org/10.1080/17512786.2024.2336136>
31. Munoriyarwa A, Chiumbu S, Motsaathebe G. Artificial intelligence practices

in everyday news production: The case of South Africa's mainstream newsrooms. *Journalism Practice*. 2023; 17(7): 1374-1392. <https://doi.org/10.1080/17512786.2021.1984976>

32. Simon FM. Escape me if you can: how AI reshapes news organizations' dependency on platform companies. *Digital Journalism*. 2024; 12(2):149-170. <https://doi.org/10.1080/21670811.2023.2287464>

33. Dörr KN. Mapping the field of algorithmic journalism. *Digital Journalism*. 2016; 4(6):700-722. <https://doi.org/10.1080/21670811.2015.1096748>

34. Böyük M. Artificial Intelligence Journalism: An enquiry within the framework of news values and ethical principles. *İletişim Kuram ve Araştırma Dergisi*. 2024; (67): 142-160. <https://doi.org/10.47998/ikad.1467118>

35. Al Adwan MN, Mahmoud MAA, Abdallah R, et al. The impact of artificial intelligence applications on media industries: A prospective study. *Journal of Namibian Studies*. 2023; 33:721-734.

36. Noain Sánchez A. Addressing the impact of artificial intelligence on journalism: the perception of experts, journalists and academics. *Communication & Society*. 2022; 35(3): 105-121. <https://doi.org/10.15581/003.35.3.105-121>

37. Haas, J. Freedom of the media and artificial intelligence. *Global Conference for Media Freedom*. 2020.

38. Chuan CH, Tsai WHS, Cho SY. Framing artificial intelligence in American newspapers. In *Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society* (pp. 339-344). 2019.

39. Yu Y. The role and influence of artificial intelligence on advertising industry. In *2021 International Conference on Social Development and Media Communication (SDMC 2021)* (pp. 190-194). Atlantis Press. 2022.

40. Zhao Y, Prabhshini K. Applications of artificial intelligence in digital publishing industry in China. In *2019 3rd International Conference on Robotics and Automation Sciences (ICRAS)* (pp. 254-259). IEEE. 2019.

41. Bhatnagar A. Artificial Intelligence generated Synthetic Media and its applications in the Media Industry. 2019 (Bachelor's Dissertation, Symbiosis (Deemed) University).

42. Sirén-Heikel S, Kjellman M, Lindén CG. At the crossroads of logics: Automating newsworthiness with artificial intelligence—(Re)defining journalistic logics from the perspective of technologists. *Journal of the Association for Information Science and Technology*. 2023; 74(3):354-366. <https://doi.org/10.1002/asi.24656>

43. Milder MJ. News media coverage and public perception of artificial intelligence: a corpus-based study of two British online media sources. 2020. (Bachelor's Thesis, University of Tartu).

44. Jamil S, Rahman M, Fawad. A comprehensive survey of digital twins and federated learning for industrial internet of things (IIoT), internet of vehicles (IoV) and internet of drones (IoD). *Applied System Innovation*. 2022; 5(3):56.

45. Septiawan R. Critical analysis of AI-produced media: a study of the implications of deep fake technology. *Devotion: Journal of Research and Community Service*. 2024; 5(7): 735-741.

46. Pandiyaraj V, Raja N. Exploration and adoption of the generative AI in digital media production: A plural perspective. *ShodhKosh: Journal of Visual and Performing Arts*. 2024; 5: 40-49.

47. Wladdimiro-Quevedo C. Artificial intelligence in national media: How the north-south divide matters (Master's Thesis, Uppsala University). 2022.

48. Khan MH. The impact of AI on the media industry (Master's Thesis, Uppsala University). 2024.

49. Díaz-Noci J. Artificial intelligence systems-aided news and copyright: Assessing legal implications for journalism practices. *Future Internet*. 2020; 12(5): 85-94. <https://doi.org/10.3390/fi12050085>

50. Tejedor S, Vila P. Exo journalism: a conceptual approach to a hybrid formula between journalism and artificial intelligence. *Journalism and Media*. 2021; 2(4):830-840. <https://doi.org/10.3390/journalmedia204004>

51. Canavilhas J. Artificial intelligence and journalism: Current situation and expectations in the Portuguese sports media. *Journalism and Media*. 2022; 3(3):510-520. <https://doi.org/10.3390/journalmedia3030035>

52. McElroy O. Examining AI and the Fourth Estate. 2023. (Master's Thesis, Lund University)

53. Hess T, Constantiou I. Introduction to the special issue on digitalization and the media industry. *Electronic Markets*. 2018; 28:77-78.

54. Zhang, Y. The integration of traditional broadcasters with artificial intelligence in television news programs. In *SHS Web of Conferences* (Vol. 158, p. 02009). EDP Sciences. 2023.

55. Wang X, Liu C, Qi Y. Research on new media content production based on artificial intelligence technology. In *Journal of Physics: Conference Series* (Vol. 1757, No. 1, p. 012062). IOP Publishing. 2021.

56. Meena MR, Jingar MP, Gupta S. Artificial intelligence: A digital transformation tool in entertainment and media industry. *Our Heritage*. 2020; 68(1):4661-4675.

57. Aissani R, Abdallah RAQ, Taha S, et al. Artificial Intelligence Tools in media and journalism: Roles and concerns. In *2023 International Conference on Multimedia Computing, Networking and Applications (MCNA)* (pp. 19-26). IEEE. 2023.

58. Túñez-López M, Tousal-Bran C, Abad CV. Automation, bots and algorithms in newsmaking. Impact and quality of artificial journalism. *Revista latina de Comunicación Social*. 2019; (74):1411-1433.

59. Rashedi H, Winckel H. Exploring the future of modern journalism with artificial intelligence. 2019. Retrieved from <https://www.mckinsey.com>

60. Kieslich K, Lünich M, Marcinkowski F. The threats of artificial intelligence scale (TAI) development, measurement and test over three application domains. *International Journal of Social Robotics*. 2021; 13(7):1563-1577.

61. Broussard M, Diakopoulos N, Guzman AL, et al. Artificial intelligence and journalism. *Journalism & Mass Communication Quarterly*. 2019; 96(3):673-695. <https://doi.org/10.1177/1077699019859901>

62. Kothari A, Cruikshank SA. Artificial intelligence and journalism: an Agenda for journalism research in Africa. *African Journalism Studies*. 2022; 43(1):17-33. <https://doi.org/10.1080/23743670.2021.1999840>

63. Jamil S. Artificial intelligence and journalistic practice: The crossroads of obstacles and opportunities for the Pakistani journalists. *Journalism Practice*. 2021; 15(10):1400-1422. <https://doi.org/10.1080/17512786.2020.1788412>

64. Lewis S.C. Journalism in an Era of big data: cases, concepts, and critiques." *Digital Journalism*. 2015; 3(3): 321-330. <https://doi.org/10.1080/21670811.2014.976399>

65. Bender SM. Coexistence and creativity: screen media education in the age of artificial intelligence content generators. *Media Practice and Education*. 2023; 24(4):351-366. <https://doi.org/10.1080/25741136.2023.2204203>

66. Borchardt A. Go, Robots, Go! The value and challenges of artificial intelligence for local journalism. *Digital Journalism*. 2022; 10(10):1919-1924. <https://doi.org/10.1080/21670811.2022.2149584>

67. Soto-Sanfiel MT, Ibiti A, Machado M, et al. In search of the Global South: assessing attitudes of Latin American journalists to artificial intelligence in journalism. *Journalism Studies*. 2022; 23(10):1197-1224. <https://doi.org/10.1080/1461670X.2022.2075786>

68. Arrese Á. "In the beginning were the data": Economic journalism as/and data journalism. *Journalism Studies*. 2022; 23(4):487-505. <https://doi.org/10.1080/1461670X.2022.2032803>

69. Sun Y, Sheng D, Zhou Z, et al. AI hallucination: towards a comprehensive classification of distorted information in artificial intelligence-generated content. *Humanities and Social Sciences Communications*. 2024; 11(1):1-14.

70. Moran RE, Shaikh SJ. Robots in the news and newsrooms: Unpacking meta-journalistic discourse on the use of artificial intelligence in journalism. *Digital journalism*. 2022; 10(10):1756-1774.

71. Vergeer M. Artificial intelligence in the Dutch press: an analysis of topics and trends. *Communication Studies*. 2020; 71(3): 373-392.

72. Li L, Liu Y, Jin Y, et al. Generative AI-enabled supply chain management:

the critical role of coordination and dynamism. *International Journal of Production Economics*. 2024; 277:1-10.

73. Prayoga NR, Fahrudin TM, Kamisutara M, et al. Unsupervised Twitter sentiment analysis on the revision of Indonesian code law and the anti-corruption law using combination method of lexicon based and agglomerative hierarchical clustering. *International Journal of Engineering Technology*. 2020; 8(1):200-220.

74. de Araujo LV. Algorithms, artificial intelligence and NLG in the production of Brazilian journalism. *Set International Journal of Broadcast Engineering*. 2017; 1-9.

75. McFadden B. A theory of media consumption and demand, with implications for media industry structure and firm strategy. Available at SSRN 3097558. 2019.

76. Kuyucu M. The place of media economics in the economic theory. *Research and Reviews in Social, Human and Administrative Sciences*. GECE Kitaplığı, Ankara, Turkey. 2019.

77. Lewis SC, Westlund O. Big data and journalism: Epistemology, expertise, economics, and ethics. *Digital Journalism*. 2015; 3(3): 447-466.

78. Adom D, Hussein EK, Agyem JA. Theoretical and conceptual framework: Mandatory ingredients of a quality research. *International Journal of Scientific Research*. 2018; 7(1): 438-441.

79. Hauer T. Technological determinism and new media. *International Journal of English Literature and Social Sciences*. 2017; 2(2):1-4.

80. Venkatesh V. Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. *Information Systems Research*. 2000; 11(4):342-365. <https://doi.org/10.1287/isre.11.4.342.11872>

81. Mariani MM, Perez-Vega R, Wirtz J. AI in marketing, consumer research and psychology: A systematic literature review and research agenda. *Psychology & Marketing*. 2022; 39(4):755-776. <https://doi.org/10.1002/mar.21619>

82. Jones B, Jones R, Luger E. AI 'Everywhere and Nowhere': addressing the AI intelligibility problem in public service journalism. *Digital Journalism*. 2022; 10(10): 1731-1755. <https://doi.org/10.1080/21670811.2022.2145328>

83. Okolo CT, Dell N, Vashistha A. Making AI explainable in the Global South: A systematic review. In *Proceedings of the 5th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies* (pp. 439-452). 2022.

84. Tang KY, Hsiao CH, Hwang GJ. A scholarly network of AI research with an information science focus: Global North and Global South perspectives. *Plos one*. 2022; 17(4):1-22. <https://doi.org/10.1371/journal.pone.0266565>

85. Amarante V, Burger R, Chelwa G, et al. Underrepresentation of developing country researchers in development research. *Applied Economics Letters*. 2022; 29(17):1659-1664. <https://doi.org/10.1080/13504851.2021.1965528>

86. Damme TE, Ivaldi M, Jappelli T, et al. *Research Funding for Economics in Europe*. 2011.

87. Veugelers R, Baltensperger M. *Europe-the Global Centre for Excellent Research*. Brussels: European Parliament. 2019.

88. Kumar P, Singh B. Artificial Intelligence for Media: Opportunities or Threats. *Journal of Communication and Management*. 2024; 3(2):107-109.

89. Zabaleta I, Xamardo N. Economy and funding of European minority language media: reality and impact of digitalization and economic crisis. *Journalism*. 2022; 23(5):1149-1168.

90. Latar N. The robot journalist in the age of social physics: The end of human journalism? The new world of transitioned media: Digital Realignment and Industry Transformation. 2015; 65-80.

91. Gutiérrez-Caneda B, Vázquez-Herrero J, López-García X. AI application in journalism: ChatGPT and the uses and risks of an emergent technology. *Profesional de la Información*. 2023; 32(5):1-17. <https://doi.org/10.3145/epi.2023.sep.14>

92. Gondwe G. Artificial intelligence, journalism, and the Ubuntu robot in Sub-Saharan Africa: Towards a normative framework. *Digital Journalism*. 2024; 1-19. <https://doi.org/10.1080/21670811.2024.2311258>